Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments.

نویسندگان

  • Béatrice Lecroq
  • Franck Lejzerowicz
  • Dipankar Bachar
  • Richard Christen
  • Philippe Esling
  • Loïc Baerlocher
  • Magne Østerås
  • Laurent Farinelli
  • Jan Pawlowski
چکیده

Deep-sea floors represent one of the largest and most complex ecosystems on Earth but remain essentially unexplored. The vastness and remoteness of this ecosystem make deep-sea sampling difficult, hampering traditional taxonomic observations and diversity assessment. This problem is particularly true in the case of the deep-sea meiofauna, which largely comprises small-sized, fragile, and difficult-to-identify metazoans and protists. Here, we introduce an ultra-deep sequencing-based metagenetic approach to examine the richness of benthic foraminifera, a principal component of deep-sea meiofauna. We used Illumina sequencing technology to assess foraminiferal richness in 31 unsieved deep-sea sediment samples from five distinct oceanic regions. We sequenced an extremely short fragment (36 bases) of the small subunit ribosomal DNA hypervariable region 37f, which has been shown to accurately distinguish foraminiferal species. In total, we obtained 495,978 unique sequences that were grouped into 1,643 operational taxonomic units, of which about half (841) could be reliably assigned to foraminifera. The vast majority of the operational taxonomic units (nearly 90%) were either assigned to early (ancient) lineages of soft-walled, single-chambered (monothalamous) foraminifera or remained undetermined and yet possibly belong to unknown early lineages. Contrasting with the classical view of multichambered taxa dominating foraminiferal assemblages, our work reflects an unexpected diversity of monothalamous lineages that are as yet unknown using conventional micropaleontological observations. Although we can only speculate about their morphology, the immense richness of deep-sea phylotypes revealed by this study suggests that ultra-deep sequencing can improve understanding of deep-sea benthic diversity considered until now as unknowable based on a traditional taxonomic approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Phylogeny and Morphology of Leannia veloxifera n. gen. et sp. Unveils a New Lineage of Monothalamous Foraminifera.

Monothalamous (single-chambered) foraminifera have long been considered as the "poor cousins" of multichambered species, which calcareous and agglutinated tests dominate in the fossil record. This view is currently changing with environmental DNA surveys showing that the monothalamids may be as diverse as hard-shelled foraminifera. Yet, the majority of numerous molecular lineages revealed by eD...

متن کامل

Microbial Diversity in Deep-sea Methane Seep Sediments Presented by SSU rRNA Gene Tag Sequencing

Microbial community structures in methane seep sediments in the Nankai Trough were analyzed by tag-sequencing analysis for the small subunit (SSU) rRNA gene using a newly developed primer set. The dominant members of Archaea were Deep-sea Hydrothermal Vent Euryarchaeotic Group 6 (DHVEG 6), Marine Group I (MGI) and Deep Sea Archaeal Group (DSAG), and those in Bacteria were Alpha-, Gamma-, Delta-...

متن کامل

Ancient DNA complements microfossil record in deep-sea subsurface sediments.

Deep-sea subsurface sediments are the most important archives of marine biodiversity. Until now, these archives were studied mainly using the microfossil record, disregarding large amounts of DNA accumulated on the deep-sea floor. Accessing ancient DNA (aDNA) molecules preserved down-core would offer unique insights into the history of marine biodiversity, including both fossilized and non-foss...

متن کامل

High species richness in deep-sea chemoautotrophic whale skeleton communities

While biodiversity in deep-sea soft sediments appears to be high, little is known about diversity levels on deep-sea hard substrates. To determine the contribution of potentially abundant whale-skeleton habitats to deep-sea biodiversity, we compare the local macrofaunal species richness and composition on 3 sulfide-rich whale skeletons to assemblages from vents, seeps, and other deepsea hard su...

متن کامل

Insights into Deep-Sea Sediment Fungal Communities from the East Indian Ocean Using Targeted Environmental Sequencing Combined with Traditional Cultivation

The fungal diversity in deep-sea environments has recently gained an increasing amount attention. Our knowledge and understanding of the true fungal diversity and the role it plays in deep-sea environments, however, is still limited. We investigated the fungal community structure in five sediments from a depth of ∼ 4000 m in the East India Ocean using a combination of targeted environmental seq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 32  شماره 

صفحات  -

تاریخ انتشار 2011